

ARDMA

ऑप्टिकल एवं माइक्रोवेव अनुप्रयोगों में उन्नत अनुसंधान Advanced Research in Optical & Microwave Applications (AROMA Lab Room No 225, Mini campus)

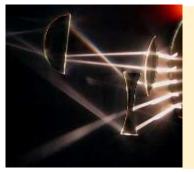
Lab In-charge:
Dr Gyanendra Sheoran
Associate Professor (Physics)
Department of Applied Sciences
National Institute of Technology Delhi

Optical imaging

- Digital holography
- Phase imaging
- Biomedical imaging
- Fringe projection

Spectral imaging

• Visible & NIR


Research Domains

Sensing

• Fiber based VIS/NIR

Instrumentation

- Optical (Visible & NIR)
- Microwave Holography

Visible Range Instruments

Sources & Detectors

Light Emitting Diodes

Laser Diodes: Range of 402 – 990 nm

He-Ne Gas Laser: 638 nm

LEDs: Range of 400 nm – 800 nm and Broadband

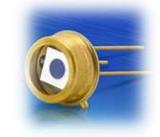
white light LEDs

Applications in – Digital holography, biomedical

imaging, microscopy, fringe projection,

spectroscopy / spectral imaging

Detectors



Laser diodes

CMOS camera

Line detector

Single pixel detector

CMOS camera: High resolution (2448 X 2048 px) with 8,10,12 bit resolution monochrome and colour cameras.

Line detector: 1X256 px., 400-1100 nm

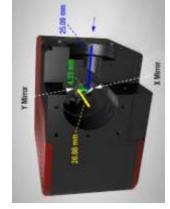
Single pixel detector: 800 – 1700 nm

Visible Range Instruments Optics

Optics

Linear Variable Filter

Telecentric Lens


Variable Numerical Aperture Microscope Objective

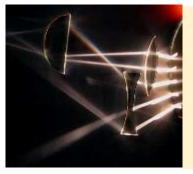
Electrically Tunable Lens

VIS – Blazed Grating

Computerized Galvo Scanner

Shearing Interferometer (for Collimation)

Optics:


- Range of broadband achromatic Lens (f: 2cm-100cm)
- Cylindrical lens, Large diameter lens (75mm).
- Front coated broadband mirrors (1" and 2").
- Transmission gratings (VIS)
- USAF Test charts (1" and 3")- Positive, Negative
- Microscope objectives (10X 60X)

Some Special Optics:

- Linear variable filter (400-750 nm)
- Electrically tunable lens (f: -50mm to +50mm)
- Variable numerical aperture (0.03 -0.36)
- Galvo mirror
- Shearing interferometer (collimation testing)
- All related opto-mechanic mounts (1mm-3")

Applications:

 Digital holography, fringe profiling, spectroscopy, biomedical imaging, auto focusing, calibration etc.

Visible Range Instruments Optomechanical Devices

Optomechanical devices

Translation stages

Polarizer Mount

Spatial filter mount (Cage type)

Kinematic Mount

Pillars, posts, base plates & clamps

Active vibration isolation tables

- Various Kinematic mounts for optics.
- Translation stages (25 mm, 10 micron pitch)
- Spatial filter assemblies with 5,10,20 micron spatial filters
- Polariser mounts
- Pillars, post holders, post bases and clamps
- Active Vibration isolation optical table

Visible Range Instruments Modulators & Spectrometer

Modulators & Spectrometer

Digital Micromirror
Device

Compact visible range Spectrometer

Digital micromirror device (DMD): Visible range, 1080X1920px

Visible spectrometer: Visible – NIR (380 nm – 1100 nm)

Indigenously developed VIS-NIR Spectrometer: 400 – 1700 nm

Applications:

 Fringe profiling, spectroscopy (VIS-NIR), study of drying process.

Near Infrared Range Instruments Source & Detectors

Source & Detector

NIR Source – Tunable Laser Module

NIR Detector

Source: Tunable Laser source, 1490 – 1610 nm

Detector: 320X256 px. (900 – 1700 nm)

Applications:

 Digital holography, biomedical imaging, imaging through turbid medium

Near Infrared Range Instruments Optics, Optical Modulators & Spectrometer

Optics, Modulator

Linear Variable Filter

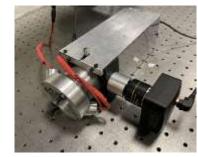
Digital Micromirror

Device

Optics: Linear variable filter, notch filter, lens and mirrors etc.

Modulator: Digital micromirror device (DMD), 900-

1700 nm.

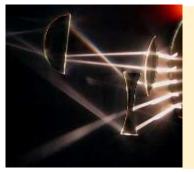

Applications:

Digital holography, biomedical imaging

Spectrometer

NIR Spectrometer

Indigenously developed VIS – NIR Spectrometer


NIR Spectrometer: 900 nm – 1700 nm

Indigenously developed VIS-NIR Spectrometer: 400 –

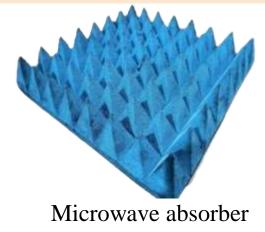
1700 nm

Applications:

spectroscopy (VIS-NIR), plant disease detection

Microwave Imaging and Instrumentation

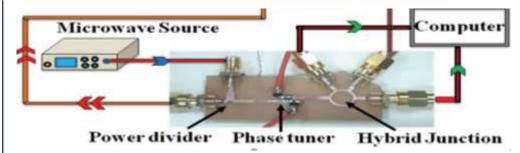
Microwave Source and Detector



Microwave sources (upto 20GHz)

Microwave Detector

Absorber & Translation stage



Motorized XYZ translation stage

Applications:

- Near Field Indirect Holographic Imaging (NFIHI) as an efficient and economical tool for breast cancer detection
- In-house development of tissue mimicking 3D printed breast phantoms
- Locating and identifying the tumors up to the minimum size of 4mm and maximum depth of 25mm

Phase shifter

In house fabricated phase shifter and power coupler

Fiber Based Sensing Applications

Source and Detector

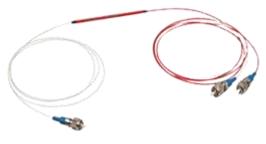
High-Speed Fiber-Coupled Detectors

Applications:

- Study of Distributed Buried Fiber Optic Intrusion Detection (FOID) for Perimeter Surveillance.
- Experimental realization, simulation and analysis of intrusion signals for human, vehicle, animal etc. using Rayleigh based optical time domain reflectometry (OTDR) in optical Fiber.

Amplifiers

Erbium-Doped Fiber Amplifiers (EDFA)


Fiber Components

Fiber Optic Circulator

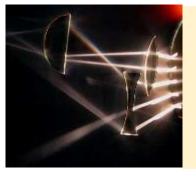
Long Fiber optic bundle

1 X 2 wideband Fiber optic coupler

Fiber Based Sensing Applications

Fiber Components

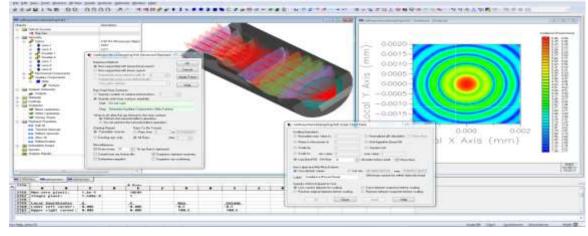
Fiber Inspection Scope

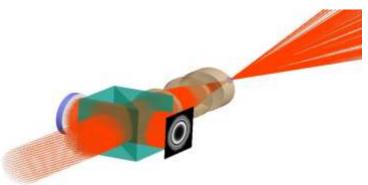


Faraday Mirrors with Fiber Optic Pigtail

Applications:

- Study of Distributed Buried Fiber Optic Intrusion Detection (FOID) for Perimeter Surveillance.
- Experimental realization, simulation and analysis of intrusion signals for human, vehicle, animal etc. using Rayleigh based optical time domain reflectometry (OTDR) in optical Fiber.


Acousto optical Modulator



Softwares

Fred Optical Engineering Software (FRED)

FRED

Design and simulation of Michelson's interferometer

Applications: (design and simulation of)

- Physical Optics
- Imaging & Stray light Analysis
- Illumination Applications
- Biomedical Systems