Minor Degree in Quantum Technology (for B. Tech. students)

Structure of the program

Courses	1 st year	2 nd year	3 rd y	year	4 th y	Total		
	1 st & 2 nd	3 rd & 4 th	5 th 6 th		7 th 8 th		credits	
	Sem.	Sem.	Sem.	Sem.	Sem.	Sem.		
Minor Programme Electives	-	-	04	08	04	-	16	
Summer Training/ Independent Study/Project	-	-	-	-	02*	-	02	
Total	-	-	04	08	06		18	

(* During the summer vacation after 6th semester)

List of Courses

Semester	Course Code	Course Name	L	Т	Р	Credits
5 th (Mandatory)	PHBB301	Introduction to Quantum Technologies and Applications	3	0	2	4
6 th (Mandatory)	PHBB351	Quantum Science and Technology	3	0	2	4
6 th	PHLB352	Introduction to Quantum Materials and Devices	3	1	0	4
anyone)	PHLB353	Solid State Physics for Quantum Technologies	3	1	0	4
	PHLB401	Introduction to Quantum Computation	3	1	0	4
17 th	PHLB402	Introduction to Quantum Communication	3	1	0	4
/ th	PHLB403	Introduction to Quantum Sensing	3	1	0	4
(Select anyone)	PHLB404	Quantum Optics	3	1	0	4
	PHPB405	Summer Training/ Independent Study/Project	-	-	-	2

COURSE CONTENT

Course Title:	Introduction to Quantum Technologies and Applications
Course Code:	PHBB301
L-T-P:	3-0-2
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics

Course	Outcomes:	Cognitive Levels		
CO-1	Explain the general physical principles involved in realizing qubits for quantum computation.	Understand (Level-II)		
CO-2	Identify and compare various hardware implementations of qubits used in quantum computing.	Analyze (Level-IV)		
CO-3	Describe the fundamental concepts and working principles of quantum sensing and its practical relevance.	Understand (Level-II)		
CO-4	Analyze real-world applications of quantum sensing and understand the implementation of quantum communication protocols in fibre-based and free-space systems.	Analyze (Level-IV)		

Course Articulation Matrix:

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	-	-	-	-	-	-	-	-		
CO-2	2	-	-	-	3	-	-	-	-	-	-	-		
CO-3	2	-	-	-	3	-	-	-	-	-	-	-		
CO-4	2	2	-	-	3	-	-	-	-	-	-	-		

1 - Slightly;

2 - Moderately;

Syllabus:		
Module	Detailed Syllabus	Contact
		Hours
Module-I	Quantum Technologies – four verticals, Motivation for Quantum	06
	Technologies,	
	A qualitative overview of salient aspects of quantum physics:	
	Quantum States, Wavefunctions, Probabilistic interpretation,	
	Physical observables, Hermitian operators, expectation values,	
	Heisenberg uncertainty principle, Schrodinger equation, Time	

	evolution distinction from classical physics Heuristic description	
	of Superposition, Tunnelling and entanglement, No cloning	
	theorem, Simulating classical systems – Feynman's idea of a	
	quantum simulator and the birth of the field	
Module-III	Quantum Computation:	10
	Basics of qubits what is a qubit, How is it different from a	
	classical bit, – Review of classical logic gates, Di Vincenzo criteria	
	for realising qubits, Basics of qubit gates and quantum circuits,	
	Physical implementation of qubits (very qualitative description),	
	Solid State Qubits, Semiconducting Qubits – quantum dots, spins	
	, Superconducting Qubits – charge, flux and phase, Topological	
	Qubits – proposals and advantages, Atoms and Ions, Trapped	
	ions, Rydberg atoms, Neutral atoms , Photonic Qubits,	
	Conventional linear optical setups , Integrated Photonics, NMR	
	qubitsConventional NMR qubits, NV centres, Overview of	
	applications and recent achievements, RSA and Shor's algorithm,	
	Quantum Advantage, Long term goals and strategies being	
	followed, Error correction	
Module-IV	Quantum Sensing:	10
	Basics of quantum sensing, Basics of Photon (single and entangled)	
	generation and detection, Gravimetry, Atomic clock,	
	Magnetometry, State of the art in Quantum Sensing	
Module V	Quantum Communications:	10
	Basics of digital communication, Quantifying classical information	
	- Shannon entropy, Basic ideas of quantum communication,	
	security, eavesdropping, Overview of quantum communication	
	achievements, Terrestrial – fibre-based, Free space, Satellite-based	

Text Books:	1.	Quantum Information Science – Manenti R., Motta M., 1st
		Edition, Oxford University Press (2023)
	2.	Quantum computation and quantum information – Nielsen
		M. A., and Chuang I. L., 10th Anniversary edition,
		Cambridge University Press (2010)
Reference Books:	1.	Elements of Quantum Computation and Quantum
		Communication, A. Pathak, Boca Raton, CRC Press (2015)
	2.	An Introduction to Quantum Computing, Phillip Kaye,
		Raymond Laflamme, and Michele Mosca, Oxford
		University Press (2006)
Other Suggested Readings:	1.	Quantum computing explained, David McMahon, Wiley
		(2008)
List of Experiments:		

1.	Creating and Measuring Quantum Superposition States in							
	Qubits							
2.	Generating and Measuring Entangled Bell States Using Two							
	Qubits							
3.	Simulating Classical System Behavior Using Quantum Circuits							
	Based on Feynman's Quantum Simulator Concept							
4.	Understanding Qubits and Quantum Gates							
5.	Quantum Circuit with CNOT Gate for Entanglement							
6.	Simulating a Simple Quantum Algorithm (Shor's Algorithm)							
7.	Implementing Quantum Error Correction							
8.	Basic Quantum Magnetometry (Simulating a Magnetic Field							
	Interaction)							
9.	Ramsey Interferometry: Measuring Quantum Phase Shifts and							
	Coherence in Qubits Using Rotational Pulses							
10.	Quantum Key Distribution (QKD) Using BB84 Protocol							

Course Title:	Quantum Science and Technology							
Course Code:	PHBB351							
L-T-P:	3-0-2							
Credits:	4							
Pre-requisites:	PHBB101 – Engineering Physics							
	PHBB301–Introduction to Quantum Technologies and Applications							

Course	Outcomes:	Cognitive Levels		
CO1	Understand and apply basic mathematical tools used in quantum science.	Apply (Level-III)		
CO2	Explain the key postulates of quantum mechanics and their simple applications.	Understand (Level-II)		
CO3	Describe the basic ideas of statistical physics and information science relevant to quantum systems.	Understand (Level-II)		
CO4	Understand basic concepts of computational complexity and their connection to quantum computing.	Understand (Level-II)		

	PO-	PO-	PO-12	PSO-	PSO-									
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	2	-	-	-	-	-	_	-		
CO-2	3	-	-	-	2	-	-	-	-	2	-	-		
CO-3	2	-	-	-	3	-	-	-	-	-	-	2		
CO-4	2	2	-	-	2	-	-	-	-	-	_	-		
1 - Slightly: 2 - Moderately:									3	Substar	tially			

T	-	51	Ig	ιιι	iy;	

г

2 - Moderately;

3 – Substantially

Syllabus:						
Module	Detailed Syllabus	Contact Hours				
Module-I	Module-I Quantum Mechanics:					
	Brief overview of classical physics (This segment is meant					
	for the student to understand what a Hamiltonian is, which					
	will feature later in quantum mechanics), Hamiltonian					
	function and Hamilton's equations, Phase-space description					
	of a system, Connection and Equivalence with Newton's					
	laws for simple systems – free particle, particle moving in a					
	conservative potential, examples of Harmonic oscillator,					

-

	hydrogen atom, Historical evolution of quantum mechanics,	
	Planck's quantum hypothesis, Photo electric effect, Atomic	
	spectra, Bohr's quantisation principle, De Broglie's Wave	
	particle duality, Postulates of Quantum Mechanics, State	
	vectors and Hilbert Space, Dirac Bra-Ket notation,	
	Measurables and Hermitian Operators, Unitary	
	Transformations, Schrodinger Equation and Time evolution	
	of quantum states, Measurement Postulate, Schrodinger,	
	Heisenberg and Interaction pictures, Eigen values,	
	Expectation values and Matrix elements, Heisenberg's	
	Uncertainty principle, Density operator formalism of	
	quantum mechanics – pure and mixed states, Superposition	
	and Entanglement in quantum mechanics, No cloning	
	theorem, Applications of postulates -Particle in a box,	
	Hydrogen atom, Harmonic Oscillator, Number states,	
	ladder operators and Coherent states of a harmonic	
	oscillator, Spin and Angular momentum - spin half	
	particles, Rabi problem of a spin-half particle in a rotating	
	magnetic field, Bosons and Fermions.	
Module-II	Statistical Physics:	8
	Quick review of first and second laws of thermodynamics,	
	Thermal Equilibrium and Gibbs principle, Applying Gibbs	
	principle to Classical and Quantum harmonic oscillators,	
	Bosons and Fermions and Quantum statistics – Fermi-Dirac	
	and Bose-Einstein distributions	
Module-III	Information Science:	6
	Digital communication and information, Quantifying	
	information in terms of Shannon entropy, Basic ideas of	
	quantum information, Decoherence and noise, Introductory	
	ideas of Kraus operators	
Module-IV	Brief overview of Computational Complexity:	6
	Qualitative ideas of a Turing machine, Types of Turing	
	machines, Time and Space complexity – P vs NP, PSPACE,	
	Quantum complexity classes - Q, EQP, BQP, BPP, QMA,	
	Post Quantum Cryptography (PQC)	

Text Books:	1. Introduction to Quantum Mechanics, Griffiths D. J., 3 ^{re}	
	Edition, Cambridge University Press (2024)	
	2. Introduction to Electrodynamics, Griffiths D. J., 4 th	
	edition, Cambridge University Press (2020)	

Reference Books:	1. I	Principles of Quantum Mechanics, Shankar, R., 2 nd
	e	edition, Springer (2014)
	2. 0	Quantum Information Science – Manenti R., Motta M., 1 st
	I	Edition, Oxford University Press (2023)
Other Suggested Readings:	1. (Quantum computation and quantum information –
	1	Nielsen M. A., and Chuang I. L., 10th Anniversary
	e	edition, Cambridge University Press (2010)
	2. /	A Pathak, Elements of Quantum Computation and
	(Quantum Communication, Boca Raton, CRC Press (2015)
	3. I	Information Theory, Robert B. Ash, Dover Publications
	((2003)
	4. I	Introduction to the Theory of Computation, Michael
	c.	Sipser, 3 rd edition, Cengage India Pvt. Ltd. (2014)
	5. 5	Statistical Mechanics, Pathria R. K., Paul D. Beale, 4 th
	e	edition, Academic Press, (2021)

List of Experiments:	
1.	Diffraction Analysis with Single Slit and Diffraction Grating
2.	Characterization of Polarization Optics
3.	Resonance in Series and Parallel RLC Circuits
4.	Measurement of Intrinsic Losses in RLC Circuits
5.	Design and Testing of Basic Digital Circuits
6.	Measurement of S-parameters for 2-port and 3-port RF
	Networks
7.	Running Quantum Algorithms on Simulators

Course Title:	Introduction to Quantum Materials and Devices
Course Code:	PHLB 352
L-T-P:	3-1-0
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics

Course	Outcomes:	Cognitive Levels
CO1	Understand the basic concepts of quantum materials and	Understand (Level-II)
<u> </u>	Early the factor of the first three in a literal it.	
CO2	Explain the fundamentals of band theory in solids and its	Understand (Level-II)
	role in understanding material behavior.	
CO3	Describe the basic principles of magnetism and	Understand (Level-II)
	superconductivity in materials.	· · · · · ·
CO4	Discuss emerging 2D materials like graphene and TMDCs	Understand (Level-II)
	and understand the basics of topology and topological	
	phases of matter.	

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	-	_	-	_	-	-	-	-		
CO-2	3	_	-	-	2	_	-	_	-	-	-	-		
CO-3	3	2	-	-	-	_	-	_	-	-	-	-		
CO-4	2	2	-	-	2	-	-	-	-	-	-	-		

1 - Slightly;

2 - Moderately;

Syllabus:						
Module	Detailed Syllabus	Contact Hours				
Module-I	Band Theory and Semiconducting Devices:	08				
	Band theory basics, Metals, Semiconductors and Insulators,					
	Band structure of solids, Survey of semiconducting devices					
	for quantum technologies (electronic, quantum optical					
	devices and principle of operation)					
Module-II	Magnetism and Correlated Systems: 08					
	Correlated systems, Magnetism, Para, ferro magnetism					
	basics, Magnetic measurements, hall effect,					
	magnetoresistance, Faraday and Kerr effects					

Module-III	Superconductivity and Quantum Devices:	08		
	Superconductivity, BCS theory, Ginzburg Landau,			
	Josephson Effect – AC and DC Josephson effects, Survey of			
	superconducting devices for quantum technologies			
Module-IV	2D materials, Graphene and its properties – single and few 12			
	layers, Transition Metal Dichalcogenides - Electronic and			
	Optical Properties, Topological Phases of matter, Basics of			
	Topology, Geometric phases - Berry Phase, Aharonov Bohm			
	effect, Topological phases of matter			
	Survey of material growth techniques, Molecular beam			
	epitaxy, Chemical vapor deposition, MOVPE, Pulsed laser			
	deposition, etc., Crystal growth techniques			

Text Books:	 Condensed Matter Physics, M P Marder, 2nd Edition, John Wiley and Sons, 2010
Reference Books:	1. Introduction to Superconductivity, Michael Tinkham, standard ed., Medtech (2017)
Other Suggested Readings:	

Course Title:	Solid State Physics for Quantum Technologies
Course Code:	PHLB 353
L-T-P:	3-1-0
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics

Course	Outcomes:	Cognitive Levels			
CO1	Understand the basic concepts of solid-state physics.	Understand (Level-II)			
CO2	Explain different approximations used to describe Analyze (Level-IV) electronic states in solids.				
CO3	Describe the theory of phonons and their role in the Apply (Level-III) properties of solids.				
CO4	Understand the basic theories of magnetism and superconductivity in solid materials.	Analyze (Level-IV)			

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	-	_	-	_	_	-	-	-		
CO-2	3	2	-	-	2	_	-	_	_	-	-	-		
CO-3	3	2	-	-	-	_	-	_	_	-	-	-		
CO-4	3	2	-	-	-	-	-	-	-	-	_	-		

1 - Slightly;

Г

2 - Moderately;

3 - Substantially

Syllabus:		
Module	Detailed Syllabus	Contact Hours
Module-I	Crystal Structure and Bonding in Solids:	08
	Structure of solids, Symmetry, Bravais lattices, Laue	
	equations and Bragg's law, Brillouin Zones, Atomic	
	scattering and structure factors, Characterisation of crystal	
	structures – XRD etc., Bonding in solids, van der Waals and	
	Repulsive interactions, Lennard Jones potential, Madelung	
	constant	
Module-II	Electron Theory of Solids:	08
	The Drude theory of metals, DC & AC electrical conductivity	
	of a metal, Hall effect & magnetoresistance, Density of states,	

-

	Fermi-Dirac distribution, Specific heat of degenerate	
	electron gases, Free electron model, Beyond the Free electron	
	model, Kronig-Penney Model, Periodic potential – Bloch	
	Theorem, Band theory, Tight binding model	
Module-III	Lattice Vibrations and Phonons:	09
	Phonons in Solids, One dimensional monoatomic and	
	diatomic chains, Normal modes and Phonons, Phonon	
	spectrum, Long wavelength acoustic phonons and elastic	
	constants, Vibrational Properties – normal modes, acoustic	
	and optical phonons	
Module-IV	Magnetism in Solids:	05
	Magnetism, Dia-, Para-, and Ferromagnetism, Langevin's	
	theory of paramagnetism, Weiss Molecular theory	
Module V	Superconductivity:	06
	Superconductivity, Phenomenological description - Zero	
	resistance, Meissner effect, London Theory, BCS theory,	
	Ginzburg-Landau Theory, Type-I and type-II	
	superconductors, Flux quantization, Josephson effect, High	
	Tc superconductivity	

Text Books:	1. Introduction to Solid State Physics, Charles Kittel, Wiley
	India Edition (2019)
	2. Condensed Matter Physics, M P Marder, 2 nd Edition,
	John Wiley and Sons (2010)
Reference Books:	1. Introduction to Superconductivity, Michael Tinkham,
	standard edition, Medtech (2017)
Other Suggested Readings:	

Course Title:	Introduction to Quantum Computation
Course Code:	PHLB 401
L-T-P:	3-1-0
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics
	CSBB 181/CSVB 204 - Problem Solving and Computer
	Programming

Course	Outcomes:	Cognitive Levels
CO1	Understand the basic postulates of quantum mechanics	Understand (Level-II)
	and the theoretical foundation of qubits and their physical	
	implementations.	
CO2	Use density operators and explain time evolution in mixed	Apply (Level-III)
	quantum states.	
CO3	Describe the basic ideas of quantum gates and how they are	Understand (Level-II)
	used in quantum circuits.	
CO4	Explain the working principles of key quantum algorithms	Analyze (Level-IV)
	and the basic concepts of quantum error correction.	

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	2	_	-	-	-	-	_	-		
CO-2	2	-	-	-	3	_	-	-	-	-	_	2		
CO-3	2	-	2	-	3	_	-	-	-	-	_	-		
CO-4	2	2	-	-	3	-	-	-	-	_	-	-		

1 - Slightly;

2 - Moderately;

3 - Substantially

Syllabus:

Module	Detailed Syllabus	Contact Hours
Module-I	Foundations of Quantum Information:	09
	Qubits versus classical bits, Spin-half systems and photon	
	polarizations, Trapped atoms and ions, Artificial atoms	
	using circuits, Semiconducting quantum dots, Single and	
	Two qubit gates - Solovay - Kitaev Theorem, Quantum	
	correlations, Entanglement and Bell's theorems	
Module-II	Classical Computation and Reversibility:	09

	Review of Turing machines and classical computational	
	complexity, Time and space complexity (P, NP, PSPACE),	
	Reversible computation, Universal quantum logic gates and	
	circuits	
Module-III	Core Quantum Algorithms:	10
	Quantum algorithms, Deutsch algorithm, Deutsch Josza	
	algorithm, Bernstein - Vazirani algorithm, Simon's	
	algorithm, Database search, Grover's algorithm, Quantum	
	Fourier Transform and prime factorization, Shor's	
	Algorithm, Quantum complexity classes - Q, EQP, BQP,	
	BPP, QMA, Additional Topics in Quantum Algorithms,	
	Variational Quantum Eigensolver (VQE), HHL,QAOA	
Module-IV	Quantum Error Correction and the NISQ:	08
	Introduction to Error correction, Fault-tolerance, Simple	
	error correcting codes, Survey of current status, NISQ era	
	processors, Quantum advantage claims, Roadmap for future	

Text Books:	 Quantum Information Science – Manenti R., Motta M., 1st Edition, Oxford University Press (2023) Quantum computation and quantum information – Nielsen M. A., and Chuang I. L., 10th Anniversary edition, Cambridge University Press (2010)
Reference Books:	 A Pathak, Elements of Quantum Computation and Quantum Communication, Boca Raton, CRC Press (2015) Quantum error correction and Fault tolerant computing, Frank Gaitan, 1st edition, CRC Press (2008)
Other Suggested Readings:	 Quantum computing explained, David McMahon, Wiley (2008) Introduction to Quantum Computing: From a lay person to a programmer in 30 steps, Hui Yung Wong, 1st edition, Springer-Nature Switzerland AG (2022)

Course Title	Introduction to Quantum Communication
course rule.	Introduction to Quantum Communication
Course Code	PHI B 402
course coue.	11120 102
L-T-P:	3-1-0
0.11	
Credits:	4
Due no suisites	DLIDD101 En sin a suite a Dharsi an
Pre-requisites:	PHDBI01 – Engineering Physics

Course Outcomes:

CO-1	Understand the basic concepts of electromagnetic (EM) theory.
CO-2	Explain the basic principles of photodetection and how light is measured.
CO-3	Describe the basic ideas of information theory relevant to communication.
CO-4	Understand the main concepts used in quantum communication systems.

Course	Outcomes:	Cognitive Levels
CO1	Understand the basic concepts of electromagnetic (EM)	Understand (Level-II)
	theory.	
CO2	Explain the basic principles of photodetection and how	Apply (Level-III)
	light is measured.	
CO3	Describe the basic ideas of information theory relevant to	Analyze (Level-IV)
	communication.	
CO4	Understand the main concepts used in quantum	Understand (Level-II)
	communication systems.	

Course Articulation Matrix:

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	_	_	-	_	_	-	_	-		
CO-2	2	_	-	-	3	_	-	_	_	-	_	-		
CO-3	2	2	-	-	2	_	-	_	_	-	_	-		
CO-4	2	2	-	-	3	_	-	_	_	-	_	-		

1 - Slightly;

2 - Moderately;

Syllabus:		
Module	Detailed Syllabus	Contact Hours
Module-I	Basics of Polarization Optics and Detection:	09
	Basics of Polarization optics, Quarter and half-wave plates,	
	Polarizing beam splitters, Basics of linear and square-law	
	detectors, Quadrature amplitude modulation, Heterodyne	

	and Homodyne demodulation and linear detectors,	
	Intensity measurements and square law detectors.	
	Photomultipliers, Avalanche Photo diodes	
Module-II	Digital Communication and Information Theory:	12
	Digital communication – information theory (basics),	
	Information entropy, Noiseless channel encoding, Noisy	
	channel encoding.	
	Core Quantum Information Concepts:	
	No cloning theorem, Quantum Memories, Quantum	
	repeaters, Entanglement and Bell Theorems, Bell	
	Measurements and Tests	
Module-IV	Quantum Communication Protocols:	07
	Quantum Teleportation protocol, Quantum Dense coding,	
	Quantum Key Distribution protocols, BB84, E91, BBM92,	
	B92, COW, DPS	
Module V	Quantum Networks and Implementation:	08
	Quantum Networks and Quantum Internet, Survey of	
	Hardware implementations, Free space communications,	
	Satellite based communications, Fibre optics-based	
	communications	

Text Books:	 Quantum computation and quantum information – Nielsen and Chuang Cambridge University Press, Cambridge (2010)
Reference Books:	 A Pathak, Elements of Quantum Computation and Quantum Communication, Boca Raton, CRC Press (2015)
Other Suggested Readings:	

Course Title:	Introduction to Quantum Sensing
Course Code:	PHLB 403
L-T-P:	3-1-0
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics

Course	Outcomes:	Cognitive Levels
CO1	Understand the basic principles of classical sensing and	Understand (Level-II)
	how they compare with quantum sensing.	
CO2	Explain key aspects of quantum measurement and how	Apply (Level-III)
	quantum states are measured.	
CO3	Describe how quantum sensing is quantified and how it	Analyze (Level-IV)
	differs from classical methods.	
CO4	Discuss the applications of quantum sensing and how	Analyze (Level-IV)
	measurements of quantum states of light are performed.	

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	_	_	-	_	_	-	_	-		
CO-2	3	_	-	-	3	_	-	_	_	-	_	-		
CO-3	2	2	-	-	3	-	-	-	-	-	_	-		
CO-4	2	2	_	_	3	_	_	_	_	_	_	-		

1 - Slightly;

2 - Moderately;

Syllabus:		
Module	Detailed Syllabus	Contact Hours
Module-I	Fundamentals of Classical Sensing and Noise:	10
	Classical sensing, Photo detection, Classical noise, Johnson	
	Noise, Telegraph noise, flicker or 1/f noise	
	Sensitivity and Information Theory in Classical	
	Measurements:	
	Sensitivity of classical measurements, Classical Fisher	
	information, Cramer - Rao bounds	
Module-II	Quantum Measurement Techniques:	08
	Quantum measurements, projective/orthogonal	
	measurements, Approximate/non-orthogonal	

	measurements, Weak continuous measurements, Error-	
	disturbance relations, Standard quantum limits, Quantum	
	non-demolition measurements	
Module-IV	Quantum States of Light and Their Characterization:	08
	States of light, Fock states, Coherent states, Squeezed states,	
	Tomography, Wigner quasi-probability distribution, P-	
	distribution, Husimi Q function	
Module V	Quantum Detection and Sensitivity Limits:	10
	Quantum photo detection, Square-law detectors, Intensity	
	measurements and Photo-detection, Linear Detectors and	
	Quadrature Measurements, Quantum Cramer-Rao bounds	
	Quantum Sensing Applications:	
	Single photon-based sensing applications, Entanglement	
	based sensing applications, Atomic state-based sensing,	
	solid-state spin-based sensing applications (gravimetry,	
	magnetometry)	

Text Books:	1. Quantum Measurement and Control, Howard Wiseman
	and David Milburn, Cambridge University Press (2014)
	2. Quantum Measurement, Vladimir Braginsky and Farid
	Ya Khalili, Cambridge University Press (1995)
Reference Books:	1. Quantum Information Science – Manenti R., Motta M.,
	1 st Edition, Oxford University Press (2023)
Other Suggested Readings:	

Course Title:	Quantum Optics
Course Code:	PHLB 404
L-T-P:	3-1-0
Credits:	4
Pre-requisites:	PHBB101 – Engineering Physics

Course	Outcomes:	Cognitive Levels		
CO1	Understand the quantization of the electromagnetic field	Understand (Level-II)		
	and different representations of states of light.			
CO2	Explain key experimental techniques used in photonics.	Apply (Level-III)		
CO3	Describe classical, semi-classical, and quantum models of	Analyze (Level-IV)		
	light-matter interaction.			
CO4	Model decoherence in quantum systems using the Master	Apply (Level-III)		
	equation approach.			

	PO-	PO-12	PSO-	PSO-										
	1	2	3	4	5	6	7	8	9	10	11		1	2
CO-1	3	2	-	-	_	_	-	_	_	-	-	-		
CO-2	2	_	-	2	3	_	-	_	_	-	-	-		
CO-3	3	2	-	-	_	_	-	_	_	-	-	-		
CO-4	3	_	-	2	2	-	-	-	-	-	_	-		

1 - Slightly;

2 - Moderately;

Syllabus:		
Module	Detailed Syllabus	Contact Hours
Module-I	Quantization of the electromagnetic field:	09
	Number states, coherent states, squeezed states, Hanbury-	
	Brown and Twiss experiments – Photon bunching, Photon	
	anti bunching, Hong-Ou-Mandel interference	
Module-II	Theory of Optical coherence:	8
	Young's double slit experiment and first order coherence,	
	Coherence functions of arbitrary order, Normal ordering,	
	symmetric ordering and ani-normal ordering of operators,	
	Interferometry	

Module-III	Phase-space representations of states of light:	8
	Wigner distribution, P-function and the notion of non-	
	classicality with some examples of nonclassical states like	
	squeezed states and their applications, Husimi Q function	
Module-IV	Light-matter interaction:	11
	Classical model of light-matter interaction, Semi-classical	
	model of light-matter interaction, Quantum light-matter	
	interaction, Rabi Model, Jayne's-cummings model	
	Open quantum systems:	
	Fermi golden rule, Born-Markov Lindblad Master Equation	

Text Books:	1. Introductory Quantum Optics, Christopher Gerry and Peter Knight, Cambridge University Press (2004)
Reference Books:	 Quantum Optics, D. F. Walls, Gerard J. Milburn, 2nd Edition, Springer (2008) Quantum Optics: An introduction, Mark Fox, Oxford University Publishers (2006)
Other Suggested Readings:	 Quantum Optics for Beginners, Z. Ficek and M. R. Wahiddin, 1st edition, Jenny Stanford Publishing (2014)

Course Code	PHPB405								
Course Title	Summer Training/ Independent Study/Project								
Type of Course	Project	Project							
	Lecture	Lecture Tutorial Practical Credits Total Lab							
					Hours				
	-	-	-	2	-				
Contact Hours									
Pre-requisite	Nil								
-									
Summer Training/ Independent Study/Project related to Quantum Technologies									